Creating an alias list/collection for data validation in Python3 (env: Jupyter Notebook)

 In Jupyter Notebook, you can create an alias list or collection for data validation using Python data structures such as lists or dictionaries. This can be helpful for defining valid values or mappings for data validation. Here's how you can do it:


**Using a List for Valid Values:**


You can create a list of valid values and then check if a given value is in the list to validate data. For example, suppose you want to validate user input for a specific field that should only be one of a predefined set of values:


```python

# Define a list of valid values

valid_colors = ["red", "green", "blue", "yellow"]


# Validate user input

user_input = input("Enter a color: ")

if user_input in valid_colors:

    print("Valid color")

else:

    print("Invalid color")

```


**Using a Dictionary for Mappings:**


If you need to validate data based on a mapping of input to expected values, you can use a dictionary. For example, suppose you want to validate user input for a country code:


```python

# Define a dictionary for valid country codes

valid_country_codes = {

    "USA": "United States",

    "CAN": "Canada",

    "GBR": "United Kingdom",

}


# Validate user input

user_input = input("Enter a country code: ")

if user_input in valid_country_codes:

    print(f"Country: {valid_country_codes[user_input]}")

else:

    print("Invalid country code")

```


In the examples above, we define a list of valid colors and a dictionary of valid country codes. You can expand these structures to suit your specific data validation needs in Jupyter Notebook. These structures help ensure that user inputs are checked against a predefined set of valid values or mappings, and you can provide feedback based on the validation results.

Post a Comment

Previous Post Next Post